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Abstract-The approximate method, developed in part I [ht. J. Heat Mass Transfer 25,1209-1220 (1982)] 
is extended with approximate relations for the computation of concentration profiles in a nonlinear 
desorption process with Dirichlet boundary conditions and a power-function variation of the diffusion 
coefficient with concentration. The relations are applicable to non-shrinking or shrinking systems with slab, 

cylindrical or spherical geometry. 
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Jo, Jl, 
K ,143 
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Sh,, 

power in concentration dependence of the 
diffusion coefficient ; 
parameter, occurring in equation (41); 
beta function, incomplete beta function ; 
diffusion coefficient [mZ s- ‘1; 
efficiency desorption process; 
time dependent part of the large time 
solution ; 
space dependent part of the large time 
solution ; 
Bessel functions of zero and first order; 
modified Bessel function of order l/4 ; 
dimensionless concentration ; 
parameter in equations (4), (5) and (9); 
average Sherwood number of the dispersed 
phase; 

Y9 variable defined in equation (18); 
Z, auxiliary variable (app. A, B). 

NOMENCLATURE 

Greek symbols 

1, separation parameter in equation (3); 

CLnr nth eigenvalue; 

v, geometry parameter; 

4, dimensionless space coordinate; 

TV dimensionless time. 

Subscripts 

c, centre; 

Q9 referring to transition point Q (part I); 
R, referring to upper bound of transition 

region ; 
T, referring to lower bound of transition 

region. 

Superscripts 
average value ; 

* referring to shrinking systems; 

n 
referring to the short time solution; 
referring to the large time solution. 

1. INTRODUCTION 

As WAS discussed in part I [l], only the particular 
solution for large times of the diffusion equation for a 
slab can be expressed in terms of known analytical 
functions. This solution, however, is rather cumber- 
some to handle due to its implicit form and the 
necessary evaluations of the beta functions involved. 
Furthermore this solution does not include the initial 
stage of the desorption process and is only valid for the 
case of slab geometry, whereas the problem for 
cylinder and sphere remains unsolved. 

In this paper our major concern will therefore be the 
construction of approximate relations for the com- 
putation ofconcentration profiles in slab, cylinder and 
sphere. By combining existing analytical solutions for 
the limiting cases, a = 0 (constant diffusion coefficient) 
and (I -+ z#, satisfactory approximations were ob- 
tained for the general case of nonlinear diffusion with a 
concentration dependent diffusion coefficient of the 
type D, = m’. Although the composite approxi- 
mations have no rigorous analytical background, they 
appear to be quite useful for computational purposes, 
due to their simplicity and accuracy, and for that 
reason are a feasible alternative to the numerical 
solution, in particular for engineering applications. 

In section 2 we will treat the approximations for 
large and short times respectively. In addition an 
appropriate transition criterion is formulated in order 
to link both limiting approximations. In section 3 we 
will compare the concentration profiles, obtained by 
employing the approximate relations and by solving 
the diffusion equation numerically. The numerical 
evaluation of concentration profiles was achieved by 
applying a finite difference technique, following the 
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Crank-Nicolson method with variable implicitness 
[2-4] for discretization. Moreover, another technique, 
involving orthogonal cohocation, was employed for 
obtaining the large time solution [S]. 

As we will frequently refer to equations or figures 
from part I, the reader is suggested to consult part I as 
much as possible. 

2. APPROXIMATE RELATIONS FOR CO~CEN~A~ON 

PROFILES 

2.1. The large time so&ion 

In this section our attention will be focussed on the 
particular solution of the diffusion equation for large 
times. As was mentioned in our previous paper [i], 
separation of variables in the diffusion equation leads 
only to a solution for the case of a slab. However, as 
will be shown in the following, satisfactory approxi- 
mations, based on known analytical solutions for the 
special cases, a = 0 (constant diffusion coefficient) and 
a -+ x6, can be constructed for slab, cylinder and 
sphere. For non-shrinking systems with I), = ma, the 
diffusion equation, according to equation (1) of part I 
becomes 

Separation of variables is achieved by substituting 
m&z) = f(r)g(#) in equation (I), resulting in two 
ordinary differential equations 

1 df A 
-- _= 

_p+‘l dt 

whereas substitution of equation (8) in equation (5) 
gives 

pa,, = Sh,,a,X 
2(v + l)(a + 1)’ 

If we assume the large time solution to be valid in point 
Q(rQ, tie) as defined in part I, integration of equation 
(7) results in 

(v + lb%,.,,. 

1 

- I 10 

2(a + 1) 
(z - r*) . (10) 

Furthermore we may express the particular solution as 

a#) - 
m(#,G = 7” (11) 

leading to 

+ {v f IbRf.,..f7 _ TQ) -I:= 

2(a + 1) 
] ’ (12) 

As an alternative we may express this solution in terms 
of the efficiency E, rather than in terms of the time 
variable T, yielding 

rnfd 9 E) = ‘*(I - E) (13) 
sr 

where gr(4) and 9; follow from equation (4) which is 
subject to the boundary conditions 

4 vl(u+t)$=O and gr= 1 at #=O (14) 

and 

1 d at 4 = 1. (15) 
_ _ 

i 

g’(v + 1)292.~“+i~~ 
& =o 

= i. 
g d4 

(3) 
This nonlinear differential equation can be classified as 

In terms of the reduced variable g, = g/g,, equation (3) 
a specific case of the Emden-Fowler equation, dis- 

becomes 
cussed extensively by Fowler [6] in relation to astro- 
physics and more recently has found a renewed interest 

g$ s:bt 
i 

zeics+&cr = _p,s,,g, 
(4) 

in the context of diffusion with chemical reaction [7]. 

d4 An analytical solution for the case of a slab (v = 0) is 

with 
derived in appendix A, leading to the implicit relation, 
already given in part I. For the average value of g,, we 

-A derived 

P&V= (,, _t l)Zg;’ (5) 
2 

s; = (16) 
Substitution of ni = f@ in equation (2) yields a+1 1 

B 

1 dm c > a+2’2 

A =f==' @) whereas, from equations (9) and (16) and (A7) we find 

According to equations (23) and (29) of part I the mass Shd.n.C = ~~>2-“8”+‘~$, gj (17) 

balance is expressed by 

dm 
Substitution of these analytical results in equations 

dz= 
-(v + l)%,,,,. *ii”+ I 

2(a+l) . 
(7) (12) or (13) results in the concentration profile as a 

function of either time 7 or efficiency E. This solution, 

Substitution of equation (7) in equation (6) then gives however, still contains the function g,(&) which cannot 

a -b+lW,,,., _a -(~+Whd.a,v~o 
be evaluated directly from its inverse function #(g,). 

‘= 2(a+l)f” m = 
In order to examine the possibility of constructing 

2(a+ I) 
(8) 

approximate relations for the still unsolved cases of 
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0 0.5 @ 1 

FIG. 1. The reduced concentratton profile gI,O,O for a slab at 
different values of a. (-): numerical, (0): approximation by 

equation (25). 

cylinder and sphere, a numerical solution of equation 
(4) was produced by an orthogonal collocation me- 

thod [5]. An analysis of the numerical solution showed 
that the concentration profile is approximated by the 
simple relation 

a 
Y a,” = YO," + (Y,.” - Y0.J - c ! ff+l 

. *. 
Since the hmrtrng solutions y,, y and Y,,~ are known 
analytical functions, the evaluation of g,,.,, from 
equation (18) becomes an easy task. Figures 1,2 and 3 
show the approximations for g,,.,, together with the 
numerical solution of equation (4) by the or~ogonal 
collocation method mentioned above. 

For a constant diffusion coefficient (a = 0) the 
analytical solutions are obtained from the first eigen- 
functions of the well known series solutions for slab, 
cylinder and sphere Es] 

Yo,o = C&,0.0 = cos (%#) (slab) (19) 

Yo,, = gr.o.l = Jo(~l~l’z) (cylinder) (20) 

in which pi = 2.40483 is the first positive root of 
Jo(a) = 0, with Jo representing the zero order Bessel 
function (in appendix B a polynomial approximation 
of the Bessel function ~o(~~#~‘z) is given for com- 
putational purposes [PI), 

sin (7~4”~) 
Yo.2 = &.o,z = ndli3 

(sphere). (21) 

0 0,s $ 1 0 0.5 (0 1 
FIG. 2. The reduced concentration profile gr,#. 1 for a cylinder FIG. 3. The reduced con~ntration profile gr.=.* for a sphere 
at different values of n. (-): numerical, (0): approximation at ditferent values of a. (-): numerical, (0): approximation 

by equation (26). by equation (27). 
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If equation (4) is expressed in terms of y 

the limiting form of this equation for a + x: becomes 

2.1.3. Sphere. 

m 0.2 = 
; sin;;f{:‘3) (1 - q 

and at C#J = 0 

$@z”““$)= -Pmn..(a + 1). (23) m,,o,2 = g(l -E) 

Equation (23) was solved by Schroeber [2], resulting in 

y,., = 1 - @Xv+U, (24) 

After substitution of the limiting solutions in equation 
(18), the following relations are obtained : 

1 ita + 1) 

, (cylinder) (26) 

1/w+ 1) 
. (sphere) (27) 

Together with the approximate relations (52), (53) and 
(54) from part I for the average values of gr,n,v. 
substitution in equation (13) finally results in the 
following expressions for the concentration m,_ y : 

2.1.1. Slab. 

7-l 

m,,, = -COS 
2 ( > 

;M (1 -E) 

and 

m,,. = (’ :+:a)i’4 [c;T;) 

+ a(1 _ 4’) 

a+1 1 
lfla+l) (1 

2.1.2. Cylinder. 

- E). (a > 0) (29) 

(a = 0) (28) 

m 0.1 = &JJo(kW2)(1 - E) (a = 0) (30) 

z: = (2;;)l-or;ff;/2 

+ a(1 - 4) Ins+l) 

a+1 1 (1 - E) (a > 0) (31) 

in which Jl(pl) = 0.51915 with J, the Bessel function 
of order 1. 

(a = 0) (32) 

(33) 

whereas, 

+ a(l _ 42’3) 

1 
l/(a+l) 

a+1 
(1 - E) (a > 0) (34) 

and at C$ = 0 

(35) 

These approximations give explicitly the concen- 
tration profiles for large times. The efficiency E is 
related to the time variable r (desorption time) by 
equation (67) of part I. For short times however, 
application of the relations given above leads to 
erroneous results, but as will be shown in the following 
section, simple approximations can also be con- 
structed for the initial stage of the diffusion process. 

2.2. The short time solution 
For a constant diffusion coefficient, the short time 

solutions for slab, cylinder and sphere can be expressed 
by the first order approximation of an error function 
series [8] : 

2.2.1. Slab. 

m o,o= 1 -erfc($$)-erfc($$) (36) 

2.2.2. Cylinder. 

mo.l = 1 - $m1’4& 
1 - p 

! > 221’2 
(37) 

with, at C$ = 0 

e-l:sz 
m c.0.1 = 1 - tnrj~f2 K1,4U/W (38) 

in which K 1 ,4 represents the modified Bessel function 
of order $. A computational formula of this function 
for large values of the argument is given in appendix B. 

2.2.3. Sphere. 

m,,, = 1 - 4-I/3 

x [erfc (s) - erfc (%)I (39) 

with, at C#J = 0 

2 
mC .O .2 = 1 - oL:2e-1i4’. (40) 
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For nonzero values of the power a, Friedmann [lOJ 
solved the diffusion equation for a semi-infinite slab. 
His second order approximation is however only 
applicable in case of small fractional values of a, either 
positive or negative. As we are not only interested in 
weak dependences, another approach is necessary in 
order to arrive at less restrictive relations which in 
addition cover the cases of cylinder and sphere as well. 
At this point it is desirable to leave the path of exact 
analytical solutions and turn our attention to feasible 
approximations. A particularly simple relation ap- 
peared to be of substantial value in approximating the 
initial stage of the diffusion process 

m (1.,s = (mo,Jb 

1 
with b = - - 

a(v + 1) 

(a+ 1) 2(v+2)(a+ l)fn+2) (41) 

in which rn+ represents the short time solution for a 
constant diffusion coefficient (a = 0), and is expressed 
by equations (36)-(40). As long as the centre con- 
centration does not alter excessively, equation (41) 
provides a satisfactory approximation. 

2.3. The transitive region 
In order to effectuate a gradual transition between 

the short time and large time approximations, a region 
is defined, in which a complete transition from the 
short time to the large time concentration profile is 

established. In part I we examined the bounds of the 
regular regime, resulting in a lower bound T, for which 

Er = l - ci;,,,, (42) 

For E -C ET, the large time approximation becomes 
impossible, because the centre concentration exceeds 
unity. As for the upper bound of the transition region, 
point Q (part I), was already defined as a transition 
point belonging to the regular regime. The con- 
centration profile, however, will exhibit much re- 
semblance to the regular regime profile, long before 
point Q is reached. In examining the fiux function G for 
a slab (part I), we observe that in point S, correspond- 
ing to the occurring maximum in the regular regime 
solution for G, the difference between the G curve and 
the regular regime solution has already become very 
small. Consequently, the concentration profile in point 
S is expected not to differ very much from the regular 
profile, indicating that point S may also serve as an 
upper bound of the transition region. Unfortunately, 
for cylinder and sphere, the maximum in the regular 
regime solution for G is located in the region E c ET 
and therefore is useless as an upper bound. For that 
reason we define the upper bound of the transition 
region for cylinder and sphere as the value of E at 
which the centre concentration is equal to the centre 
concentration in point S for a slab. 

According to equations (40) and (50) of part I, the 

Table 1. Approximate relations for the computation of concentration profiles in case of a concentration 
dependent diffusion coefficient of the type: D, = m’ 

SLAB (v=o) I CYLINDER iv:11 I SPHERE (v-2) 

Short time approximations with: b=~-~~ ( penetration period : E < ET) 

m C~,=[1-(1~.t)-"?e-~'~~. Kl,,&)lb [1-2(rC.z)-"Zi"4'lb * I m;,p*z= 

Large time approximations (regular regime: E> E,) 

mg,,= qcos(~~@)[l-El 

~~_!2+~eza~~c0S('~~) &i 

’ a+2 + o+l ' 
+a(l-@)I 

II-El 

Transition region with: m,,,I (hElmhO+ (E-ET)~~., 
ER- ET 

(ET~E PER) 

1-h la=01 

C 

1-2 (0=0) l--$ la=01 

ET = ,_(Z;$a j"' 
ET = ET = 

f _ (2+teaJ3a)+a 
a+2 

lo=01 (0=Ol 
ER q 

j- Je 

l-q.y~!5;, 

ER = 
l- 4& 

1-(2+teQy&l) 
+ 2+i@a a+2 
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05 m 
mzl 92 

0 05 

FIG. 4. Concentration profiles M,, y at different values of the efficiency E, for slab (v = 0), non-shrinking 
cylinder (v = 1) and non-shrinking sphere (v = 2) with a = i, 1,2,4. (-): numerical, (0): approximations 

according to Table 1. 
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0 0'5 @ 1 

mjl 

0 05 aJ 

~-“-~-o-o 0 ‘j”_,_ 

u+ ,u+ 

0 0.5 @I 0 05 

FIG. 5. Concentration profiles m,*. y at different values of the efficiency E, for a shrinking cylinder (v = 1) and 
sphere (v = 2) with a = f, 1, 2,4. (-): numerical, (0): approximations according to Table 1. 
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value of the efficiency in point R is then determined by 

Having established the location of the transition 
region, we will now turn to the problem of how the 
transition will take place. We therefore assumed a 
linear combination between the two limiting approxi- 

mations, which, anticipating the computational re- 
sults, appeared to provide an effective transition. The 
concentration during the transition is then expressed 

by 

m ll.,,= 
(Ed - Ebb,, + (E - ETM., 

E, - ET 
(44) 

where mi,, and mf,,, are the short and large time 
approximations respectively. In Table 1 a summary is 

presented of the formulas, needed for the computation 

of concentration profiles in the regions of interest. 

3. RESULTS AND DISCUSSION 

A numerical solution of equation (l), subject to the 
boundary conditions as stated in part I, was obtained 
by a finite difference method, applying the Crank- 
Nicolson discretization scheme and a variable im- 
plicitness factor [2-41. The approximate concen- 
tration profiles were computed according to the 
relations from Table 1 combined with the procedure 
for the computation of desorption times as given in 
part I. 

In Fig. 4 the results of both numerical and approxi- 
mate method are shown for slab, cylinder and sphere 
at increasing values of a, demonstrating a remarkable 
agreement. The deviations are mainly located in the 
transition region, but vanish rapidly as soon as the 
regular regime and consequently, the large time approxi- 
mation becomes dominating. 
and the diffusion process is virtually proceeding in the 
regular regime and consequently, the large time appro- 
ximation becomes dominating. 

For shrinking systems, the concentration profiles 
seem to be only slightly affected by shrinkage, which 
evidently is inherent in the application of the shrinking 
coordinate system as defined in part I. 

In Fig. 5 we plotted the approximate concentration 
profiles for shrinking cylinder and sphere together 
with the profiles obtained numerically. As may be 
observed, the concentration profiles in case of 
shrinkage, tend to a slightly more rectangular shape 
compared to the profiles when no shrinkage is in- 
volved. However, as the value of a increases, the 
occurring differences gradually vanish. From these 
observations we may conclude that also for shrinking 
systems the approximate relations from Table 1 can be 
applied directly for the computation of concentration 
profiles. Incidentally, it should be pointed out that, 
although the profiles for shrinking and non-shrinking 
systems show an apparent similarity for equal values of 
the efficiency E, the time scale of the diffusion process 
in both systems is entirely different. 

Altogether, the combined methods from parts I and 
II provide adequate approximations for the solution of 
the nonlinear diffusion equation, subject to Dirichlet 
boundary conditions and a power-function variation 
of the diffusion coefficient with concentration. The 
approximations cover the three basic geometries : slab, 
cylinder and sphere and are applicable to systems with 
or without shrinkage. 

1. 

2. 

6. 

7. 

8. 

9. 

10. 
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APPENDIX A 

THE LARGE TIME SOLUTION FOR A SLAB 

For a slab (v = 0), equation (4) may be written as 

subject to the boundary conditions 

dgr 
9, = 1, do -=0 at 4=0, 

641) 

g.=O at +=l. (A3) 

Multiplying both sides of equation (Al) by 29: dgdd4 and 
subsequent integration yields 

.dgr 2f’,.o I” 
“G= a+2 r 

(-) (1 - go+2)1’2. (A4) 

Substituting z = gtfZ in equation (A4) and integrating once 
more results in 

[2(a+2)P,,,1”‘(1-4) = 
s 

Z~--1(‘+2)(1 - z)-1’2dz. 
0 

(A5) 

The RHS of equation (A5)is the integral representation of the 
incomplete beta function B,[(a + l)/(a +2), l/2] [9]. Because 
at 4 = 0, z = 1, we obtain from equation (A5) 
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(A61 

where B represents the beta function. 
From equation (A6) follows : 

pa.0 = 
2(a i- 2) 

(A7) 

whereas, equation (A5) turns into 

BZ~&,;)=B&;)(l-#) (A81 

which, implicitly gives g, as a function of #. 

APPENDIX B 

POLYNOMIAL AND RATIONAL APPROXIMATIONS FOR 
THE FUNCTIONS: J,(z), e&(z) AND K,,,(z) [9] 

7’he Besselfunction of order 0: J,(z) (- 3 Q z < 3) 

J,(z) = 1 - 2.2499997+/3)* + 1.2656208(z/3)4 

- 0.3163866(z/3)6 + 0.~4479(z~3)8 

- 0.0039444(~/3)‘~ - 0.0002100(z/3)‘2 + 1 c/(Bl) 

with 1~1 < 5 x lo-*. 

The complementary error function : erfc(z) 

erfc(z) = (0.254829592 x - 0.284496736 x2 

+ 1.421413741 x3 - 1.453152027~~ 

+ 1.061405429 x5)e-rz + IEJ (I321 

with 

x = l/(1 + 0.3275911 z) and ICI < 1.5 x lo-‘. 

The iodized Bessei unction of order 4: K 1 &) : Approxi- 
mation for targe v&es of 2 

K1,Jz) = (x/2z) l/Z,-. 075 1 _: 
82 

+ (0.75)(8.75) (0.75)(8.75)(24.75) 

2(8z)’ 
-pp. 

6(82)3 
(B3) 

UNE METHODE APPROCHEE DE RESOLUTION DU PROBLEME DE DIFFUSION NON 
LINEAIRE AVEC UNE LO1 PUISSANCE ENTRE LE COEFFICIENT DE DIFFUSION ET LA 

CONCENTRATION-II. CALCUL DES PROFILS DE CONCENTRATION 

R&m&-La m&hode approch& d&elope dans la partie I [l] est &endue avec des relations approch&es 
pour le cakul des proiils de conflation dans un m&a&me de dkorption non line%e avec des conditions 
aux limites de DirichIet et une variation en ioi puissance du coefficient de diffusion en fonction de la 
concentration. Les relations sont applicables aux systemes r&ractables ou non ii giomitrie plane, cylindrique 

ou sphdrique. 

EINE N~HER~GSMETHODE ZUR LOSUNG DES NICHTLINEAREN 
DIFFUSIONSPROBLEMS MIT EINER POTENZBEZIEH~G ZWISCHEN 

DIFFUSIONSKOEFFIZIENT UND KONZENTRATION-II. BERECHNUNG VON 
KONZENTRATIONSFPROFILEN 

B-Die in Teil I [1] entwickelte Naerungsmethode wird erweitert durch N;iherungs- 
beziehungen fti die Berechmmg von Konzentrationsprofikn fiii einen nichthneamn DesorptionsprozeD 
mit D~~~t-R~d~~~ und einer Verrkxkrung des Di~on~~~~~ mit der Komtration 
nach einer Poten~~ktion. Die ~ehun~n sind anwendbar auf nicht-~hr~pfende oder ~hrumpfende 

Systeme mit Platten-, Zylinder- bzw. Kugengeometrie. 

I-IPHEJIWKEHHbIfi METOg PEIIIEHWI 3AfiAYA HEJIMHEfiHOfi J&f@0Y3MM IIPM 
CTEI-IEHHOfi 3AB~C~MOCT~ KO3~~~~~EHTA ~~~~Y3~~ OT KOH~EHTPA~~~. 

II. PACYET nP~~~E~ KOH~EHT~A~~~ 

AHHOTPUWII - ~~O~O~HTCX HeKoTopan Monu@nranHn npe&aoxceHHoro B pa6oTe [I] nps6nexceHHoro 
MeTona, xoTopb1ii 3aTeiw Acnonb3yeTcn nnn pacseTa npo@ineii XoHueHTpaueu rienmieiiHor0 npouecca 
necop6ues llpH rpaHH’fHbIX yCJlOBWlX &ipWUIe W CTeIleHHOii JBBUCNMOCTH K03I$&iUWeHTa AH$@y3HA 
OT KOHUeHTpaWiH. Meron MOxeT tlpI%MeHaTbCR AJIZI paC’ieTa CUCTeM C yCa&KOii WIA 6e3 B cnysae 

cnenymmux reobferprrii: nnacraaa, unnuaap, map. 


