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Abstract—The approximate method, developed in part I [Int. J. Heat Mass Transfer 25, 1209-1220 (1982)]

is extended with approximate relations for the computation of concentration profiles in a nonlinear

desorption process with Dirichlet boundary conditions and a power-function variation of the diffusion

coefficient with concentration. The relations are applicable to non-shrinking or shrinking systems with slab,
cylindrical or spherical geometry.

NOMENCLATURE
a, power in concentration dependence of the
diffusion coefficient ;
b, parameter, occurring in equation (41);
B,B,, beta function, incomplete beta function;
D, diffusion coefficient [m?s~'];
E, efficiency desorption process;
A time dependent part of the large time
solution;
4, space dependent part of the large time
solution;
Jo,J1, Bessel functions of zero and first order;
K,4  modified Bessel function of order 1/4;
m, dimensionless concentration ;
P, parameter in equations (4), (5) and (9);
Shy, average Sherwood number of the dispersed
phase;
¥, variable defined in equation (18);
z, auxiliary variable (app. A, B).
Greek symbols
A, separation parameter in equation (3);
7 nth eigenvalue;
v, geometry parameter;
P, dimensionless space coordinate;
T, dimensionless time.
Subscripts
c, centre;
Q, referring to transition point Q (part I);
R, referring to upper bound of transition
region ;
T, referring to lower bound of transition
region.
Superscripts

s average value;

* referring to shrinking systems;

f referring to the short time solution;
, referring to the large time solution.

1. INTRODUCTION

As was discussed in part I [1], only the particular
solution for large times of the diffusion equation for a
slab can be expressed in terms of known analytical
functions. This solution, however, is rather cumber-
some to handle due to its implicit form and the
necessary evaluations of the beta functions involved.
Furthermore this solution does not include the initial
stage of the desorption process and is only valid for the
case of slab geometry, whereas the problem for
cylinder and sphere remains unsolved.

In this paper our major concern will therefore be the
construction of approximate relations for the com-
putation of concentration profiles in slab, cylinder and
sphere. By combining existing analytical solutions for
the limiting cases, a = 0 (constant diffusion coefficient)
and a — oo, satisfactory approximations were ob-
tained for the general case of nonlinear diffusion with a
concentration dependent diffusion coefficient of the
type D, = m" Although the composite approxi-
mations have no rigorous analytical background, they
appear to be quite useful for computational purposes,
due to their simplicity and accuracy, and for that
reason are a feasible alternative to the numerical
solution, in particular for engineering applications.

In section 2 we will treat the approximations for
large and short times respectively. In addition an
appropriate transition criterion is formulated in order
to link both limiting approximations. In section 3 we
will compare the concentration profiles, obtained by
employing the approximate relations and by solving
the diffusion equation numerically. The numerical
evaluation of concentration profiles was achieved by
applying a finite difference technique, following the
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Crank-Nicolson method with variable implicitness
[2-4] for discretization. Moreover, another technique,
involving orthogonal collocation, was employed for
obtaining the large time solution {5].

As we will frequently refer to equations or figures
from part I, the reader is suggested to consult part I as
much as possible.

2. APPROXIMATE RELATIONS FOR CONCENTRATION
PROFILES

2.1, The large time solution

In this section our attention will be focussed on the
particular solution of the diffusion equation for large
times. As was mentioned in our previous paper [1],
separation of variables in the diffusion equation leads
only to a solution for the case of a slab. However, as
will be shown in the following, satisfactory approxi-
mations, based on known analytical solutions for the
special cases, a = 0 (constant diffusion coefficient) and
a ~ %, can be constructed for slab, cylinder and
sphere. For non-shrinking systems with D, = m*, the
diffusion equation, according to equation (1) of part I
becomes

om 0

ax og\"
Separation of variables is achieved by substituting
m(p,t) = fl(r)g(¢) in equation (1), resulting in two
ordinary differential equations
L&

fa#l df

om
2 4 2vi{v+ 1)
L r - I

2)
and

d a 2 2v4(\+1)dg>: 1
dqb( v+ 1)¢ do A. 3)

In terms of the reduced variable g, = g/g., equation (3)

becomes
d d
dd)( ¢2\l(l+‘) dﬁ) awgr (4)
with
—A
P @
Substitution of m = fJ in equation (2) yields
) 1 dm
A —-fam a? (6)

According to equations (23)and (29) of part I the mass
balance is expressed by

dm  —(v+ [)Shy, , —
dr 2a+1)
Substitution of equation (7) in equation (6} then gives
0 DSheyy L, =0+ DSh,
2(a+ 1) f° 2a+1)

(™

(8)
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whereas substitution of equation (8) in equation (5)
gives
_ Shy..df
SO 2v+ a4+ 1)
If we assume the large time solution to be valid in point

Q(ty, M) as defined in part I, integration of equation
(7) results in

&)

Furthermore we may express the particular solution as
(¢ = " )
leading to
S

v+ DaShy,,

TP ("c—~re)} . (12)

As an alternative we may express this solution in terms
of the efficiency E, rather than in terms of the time
variable 1, yielding

m($.E) = g‘;"”( ~E)

r

{13)

where g,(¢) and g, follow from equation (4), which is
subject to the boundary conditions

d
¢v/(v+*>£=o and g,=1 at ¢=0 (14)
g. =0 at ¢ =1. (15)

This nonlinear differential equation can be classified as
a specific case of the Emden-Fowler equation, dis-
cussed extensively by Fowler [6] in relation to astro-
physics and more recently has found a renewed interest
in the context of diffusion with chemical reaction [7].
An analytical solution for the case of a slab (v = 0) is
derived in appendix A, leading to the implicit relation,
already given in part I. For the average value of g,, we
derived

2
o = (16)

9 a+1 1
B , -
a+2 2

whereas, from equations (9) and (16) and (A7) we find

a+ 1 a+1 1
Sh = 279Bs 17
I

Substitution of these analytical results in equations
(12) or (13) results in the concentration profile as a
function of either time t or efficiency E. This solution,
however, still contains the function g,{¢) which cannot
be evaluated directly from its inverse function ¢(g,).
In order to examine the possibility of constructing
approximate relations for the still unsolved cases of
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F16. 1. The reduced concentration profile g, , , for a slab at
different values of a. (—): numerical, (Q): approximation by
equation (25).
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FiG. 2. The reduced concentration profile g, , , for a cylinder
at different values of a. (—): numerical, (Q): approximation
by equation (26).

1223

cylinder and sphere, a numerical solution of equation
(4) was produced by an orthogonal collocation me-
thod [5]. An analysis of the numerical solution showed
that the concentration profile is approximated by the
simple relation

Ys:.v"yo,v yco.v y(),v a+1

+1 (18)

fa,v

with y,,=

Since the limiting solutions y, , and y,, , are known
analytical functions, the evaluation of g,, , from
equation (18) becomes an easy task. Figures 1,2 and 3
show the approximations for g, , , together with the
numerical solution of equation (4) by the orthogonal
collocation method mentioned above.

For a constant diffusion coefficient (¢ = 0) the
analytical solutions are obtained from the first eigen-
functions of the well known series solutions for slab,
cylinder and sphere [3]

Yo,0 = gr 0.0 =CO8 (3m) {slab) (19)
Yo1=08:r01= Jolus#'?)  (cylinder)  (20)

in which u, = 2.40483 is the first positive root of
Jofit,) = 0, with J, representing the zero order Bessel
function (in appendix B a polynomial approximation
of the Bessel function J,{u,¢'"?) is given for com-
putational purposes [9]),

sin (ng!/3)

Yo2=0r02= mnq&” (sphere). 2n
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F1G. 3. The reduced concentration profile g, , , for a sphere
at different values of a. (—): numerical, {(O): approximation
by equation (27).
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If equation (4) is expressed in terms of y
)
vAv+1) =_pP 1 1Aa+1) 22
a0 gg )= TP T @2)
the limiting form of this equation for a - o becomes

%(tpzv«m,di\):

Equation (23) was solved by Schroeber [ 2], resuiting in

(24)

P, fa+1) (23)

2v+1
yao»=1_¢ © ),

After substitution of the limiting solutions in equation
(18), the following relations are obtained :

_ Jeos(* N !
Grao0 = {cos (5n¢) + [ — ¢* —cos (Enqﬁ)]

a 1/a+1)
X <a " 1)} , (slab) (25)
Ira1 = i-’o(ﬂ1¢”z) + [1 - ¢ — Jo(l‘ld’“l)]
1Ma+1)

( - )} . f(cylinder) (26)

fsm(nd)“’ I_i . A2/3 _ Sin (n¢l/3)—|

Gea2 = 1 PYSIE + L‘ ¢ o173 J
a \}1/(a+l) o

\a+l}j

Together with the approximate relations (52), (53) and
(54) from part 1 for the average values of g, , ,,
substitution in equation (13) finally results in the

1 1 tha
following expressions for the ¢

2.1.1. Slab.
T (1 \
My o= —cos|-n¢ |(1 — E) (a=0) (28)
z \z / \ 7
and
(2 + 1eza\”" [_cos(—nqb)
Ma.0 \a+2 ] | a+1
1 _ ¢l) 1fa+1)
e } (1-E). (@a>0) (29)
2.1.2. Cylinder.
=M 12y¢1 _ _
Mg 211(#1)J°(#’¢ )(1 — E) (@a=0) (30
and
(24 ea\'"[Jy(ud'?
" \a+2 a+1
a(l — ¢) ety
(1-E) @>0) (31)

a+1 J

in which J,(u,) = 0.51915 with J, the Bessel function
of order 1.
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n? sin(n¢'”
ma = Tl B @=0) (2
and at ¢ =0
Meo.2=-—(1—E) (33)
whereas,
l 8/3a\| /a|' sin(n¢”3)
m. ., = :
o \ a+2 ) |(a+ )(ng'?)
A2/ Aa+ 1)
LT hy s o)
a+1 |
andat ¢ =0
2 + seBlg)\le
=—— 1—-E 35
mc‘a‘Z < a+ 2 ( ) ( )

These approximations give explicitly the concen-
tration profiles for large times. The efficiency E is
related to the time variable t (desorption time) by
equation (67) of part 1. For short times however,
application of the relations given above ieads to
erroneous results, but as will be shown in the following
section, simple approximations can also be con-

structed for the initial stage of the diffusion process.
2.2. The short time solution

For a constant diffusion coefficient, the short time
solutions for slab, cylinder and sphere can be expressed
by the first order approximation of an error function
series [8]:

2.2.1. Siab.

\—erfc( Y

moo—l—erfc(

(36)

\2t12 )/ \ 41 /

2.2.2. Cylinder.
L 1 — ¢l/‘2
me,=1—¢ erfc <-‘27172—> (37)
with, at ¢ = 0
e~ 1/87

Meo1 = 1 - (nr)l/‘z Klm(l//gf). (38)

in which K, , represents the modified Bessel function

of order L. A computationa} formula of this function

for large values of the argument is given in appendix B.
2.2.3. Sphere.

m0,2 = 1 . ¢—1/3

X [erfc( 1;—?;21/3):' (39)

1— ¢1J3
2‘[4”2>—— erfc(
with, at ¢ =0

2

(nt)”2

m =1 — ~1/“"

ez T

~
I
(=]
~
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For nonzero values of the power a, Friedmann [10T
solved the diffusion equation for a semi-infinite slab.
His second order approximation is however only
applicable in case of small fractional values of g, either
positive or negative. As we are not only interested in
weak dependences, another approach is necessary in
order to arrive at less restrictive relations which in
addition cover the cases of cylinder and sphere as well.
At this point it is desirable to leave the path of exact
analytical solutions and turn our attention to feasible
approximations. A particularly simple relation ap-
peared to be of substantial value in approximating the
initial stage of the diffusion process

ma,v = (m(),v)b
[ av +1)
@a+1) 200+2)a+Na+2)

in which m,_, represents the short time solution for a
constant diffusion coefficient (a = 0), and is expressed
by equations (36)-(40). As long as the centre con-
centration does not alter excessively, equation (41)
provides a satisfactory approximation.

with b= 41)

2.3. The transition region

In order to effectuate a gradual transition between
the short time and large time approximations, a region
is defined, in which a complete transition from the
short time to the large time concentration profile is
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established. In part I we examined the bounds of the
regular regime, resulting in a lower bound T, for which
Er=1

- gr,u,v‘ (42)

For E < E,, the large time approximation becomes
impossible, because the centre concentration exceeds
unity. As for the upper bound of the transition region,
point Q (part I), was already defined as a transition
point belonging to the regular regime. The con-
centration profile, however, will exhibit much re-
semblance to the regular regime profile, long before
point @ is reached. In examining the flux function G for
a slab (part I), we observe that in point §, correspond-
ing to the occurring maximum in the regular regime
solution for G, the difference between the G curve and
the regular regime solution has already become very
small. Consequently, the concentration profile in point
§ is expected not to differ very much from the regular
profile, indicating that point § may also serve as an
upper bound of the transition region. Unfortunately,
for cylinder and sphere, the maximum in the regular
regime solution for G is located in the region E < E;
and therefore is useless as an upper bound. For that
reason we define the upper bound of the transition
region for cylinder and sphere as the value of E at
which the centre concentration is equal to the centre
concentration in point S for a slab.

According to equations (40) and (50) of part I, the

Table {. Approximate relations for the computation of concentration profiles in case of a concentration
dependent diffusion coefficient of the type: D, = m*

SLAB (v=0) l

CYLINDER (v=1)

| SPHERE (v-2)

Short time approximations with: E_T

v+l u+1 {a+2)

{ penetration period: E<Ey)

m o= [1-erfc(1=0) -erfc(128)°
ot Nt W%

:01

m =1 —¢""Terfc(‘2;?;}}b
" T

=1-(reo2eer Km('L)]

1-¢"(erfc{ ]%) erfc(hL)

m o= 120wy 21 1

Large time approximations (reqular regime: E> Eg)

mg o= Tz_tcos(‘,nw)n-el I
1

my= - (2+}elny "“{COS(1E¢} af —?z)f]‘l

Ll:_ INTRL RS,

m —(_._e& 1M+ M]Jﬁ‘

" _1;2 snn(mb"s)
Mo, nd
e =2k ¥ sintre¢?™ | at -&fi

a+2 G+ a+1 a+2 {a+! 1){?1:@33} a+l
{1-E] [1-E] [1-E]
Transition region with: Mg, = (ER‘E)"‘&? (E“ET)"‘gv (Et<E <Eg)
r-E1 = =
1—2» (a=0} {1-2Jpj ) {a=0) ! . {1-—3—2- (a=0)
Ey = _ =
{1 (2+fetayhe T l1o(2eeai™ T (_:;Ef”_ﬂy”“
a+2 a+?
B, =L 1- i) =0) 1- 3 {a=01
R as? Eq ={ T, ta Eq —{ [3
1-(2+1e?a[Rast (_.}.SE)"“(M
Z+rea  a+2 24}e83q u+2
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FiG. 4. Concentration profiles m, , at different values of the efficiency E, for slab (v = 0), non-shrinking
cylinder (v = 1) and non-shrinking sphere (v = 2) with @ = 4, 1, 2, 4. (—): numerical, (O): approximations
according to Table 1.
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value of the efficiency in point R is then determined by

ER=1—@<QH>.
9r a0 \d + 2
Having established the location of the transition
region, we will now turn to the problem of how the
transition will take place. We therefore assumed a
linear combination between the two limiting approxi-
mations, which, anticipating the computational re-
sults, appeared to provide an effective transition. The
concentration during the transition is then expressed
by

(43)

(Eg — E)ym, , + (E — Ex)mg ,

ma \'=
' Ep— Ep

(44)
where m, , and m, , are the short and large time
approximations respectively. In Table 1 a summary is
presented of the formulas, needed for the computation
of concentration profiles in the regions of interest.

3. RESULTS AND DISCUSSION

A numerical solution of equation (1), subject to the
boundary conditions as stated in part I, was obtained
by a finite difference method, applying the Crank-
Nicolson discretization scheme and a variable im-
plicitness factor [2-4]. The approximate concen-
tration profiles were computed according to the
relations from Table 1 combined with the procedure
for the computation of desorption times as given in
part L.

In Fig. 4 the results of both numerical and approxi-
mate method are shown for slab, cylinder and sphere
at increasing values of a, demonstrating a remarkable
agreement. The deviations are mainly located in the
transition region, but vanish rapidly as soon as the
regular regime and consequently, the large time approxi-
mation becomes dominating,
and the diffusion process is virtually proceeding in the
regular regime and consequently, the large time appro-
ximation becomes dominating.

For shrinking systems, the concentration profiles
seem to be only slightly affected by shrinkage, which
evidently is inherent in the application of the shrinking
coordinate system as defined in part L.

In Fig. 5 we plotted the approximate concentration
profiles for shrinking cylinder and sphere together
with the profiles obtained numerically. As may be
observed, the concentration profiles in case of
shrinkage, tend to a slightly more rectangular shape
compared to the profiles when no shrinkage is in-
volved. However, as the value of a increases, the
occurring differences gradually vanish. From these
observations we may conclude that also for shrinking
systems the approximate relations from Table 1 can be
applied directly for the computation of concentration
profiles. Incidentally, it should be pointed out that,
although the profiles for shrinking and non-shrinking
systems show an apparent similarity for equal values of
the efficiency E, the time scale of the diffusion process
in both systems is entirely different.

J. K. Liou and S. BRuIN

Altogether, the combined methods from parts I and
II provide adequate approximations for the solution of
the nonlinear diffusion equation, subject to Dirichlet
boundary conditions and a power-function variation
of the diffusion coefficient with concentration. The
approximations cover the three basic geometries: slab,
cylinder and sphere and are applicable to systems with
or without shrinkage.
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APPENDIX A

THE LARGE TIME SOLUTION FOR A SLAB
For a slab (v = 0), equation (4) may be written as

d(,,dgr - _p
d¢ grd¢ - a,Ogr

subject to the boundary conditions

(A1)

dg,
=1, =0 at =0, A2
g P at ¢ (A2)
g.=0 at ¢=1 (A3)

Multiplying both sides of equation (Al) by 24? dg,/d¢ and
subsequent integration yields

1,2
99 <2Pa‘0> (= got 3,

Ydp " \a+2 (Ad)

Substituting z = ¢°*2 in equation (A4) and integrating once

more results in

2z
z7la* (] . z)"12dz,

[2a+ 2P, 2(1=4) = |
/]
(AS5)
The RHS of equation (A5)is the integral representation of the
incomplete beta function B,[(a +1)/(a +2), 1/2] [9]. Because
at ¢ = 0, z = 1, we obtain from equation (AS)
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a+2’2

where B represents the beta function.
From equation (A6) follows:

B (a +1 1)
_.L".gl. (A7)
2@+2)

whereas, equation (AS) turns into

a+1 1 a+1 1
I P b VO A
Bz(a+2’2) B<a+2’2>(1 2 (A8)

which, implicitly gives g, as a function of ¢.

[2a+2)P, ] = B(“ +1 1) (A6)

Pu,()z

APPENDIX B

POLYNOMIAL AND RATIONAL APPROXIMATIONS FOR
THE FUNCTIONS: J,(2), erfc(z) AND K, 4(2) [9]

The Bessel function of order 0: Jy(z) (-3 <2< 3)

Jolz) = 1 — 2.2499997(z/3) + 1.2656208(z/3)*
— 0.3163866(z/3)° + 0.0444479(z/3)°
— 0.0039444(z/3)'° — 0.0002100(z/3}'2 + | &|(B1)
with |¢| <5 x 1078,
The complementary error function: erfe(z)
erfe(z) = (0.254829592 x — 0.284496736 x*
+ 1421413741 x® ~ 1453152027 x*
+ 1.061405429 x%)e"*" + |4 (B2)
with
x=1/(1+03275911z) and |ef< 1.5 x 1077

The modified Bessel function of order §: K, ,{z): Approxi-
mation for large values of z

K, 4(2) = (r/22)' 72 e"[il — 0_7_5_
8z
0.75)@75) _ 075)8752475)) o,
2(8z)? 6(8z)° ] (B3)

UNE METHODE APPROCHEE DE RESOLUTION DU PROBLEME DE DIFFUSION NON
LINEAIRE AVEC UNE LOI PUISSANCE ENTRE LE COEFFICIENT DE DIFFUSION ET LA
CONCENTRATION—II. CALCUL DES PROFILS DE CONCENTRATION

Résumé—La methode approchee developpee dans la partie I [1] est étendue avec des relations approchées

pour le calcul des profils de concentration dans un mécanisme de désorption non linéaire avec des conditions

aux limites de Dirichlet et une variation en loi puissance du coefficient de diffusion en fonction de la

concentration, Les relations sont applicables aux systémes rétractables ou non 4 géométrie plane, cylindrique
ou sphérique.

EINE NAHERUNGSMETHODE ZUR LOSUNG DES NICHTLINEAREN
DIFFUSIONSPROBLEMS MIT EINER POTENZBEZIEHUNG ZWISCHEN
DIFFUSIONSK OEFFIZIENT UND KONZENTRATION—II. BERECHNUNG VON
KONZENTRATIONSFPROFILEN

Zusammenfassung—Die in Teil I [1] entwickelte Naherungsmethode wird erweitert durch Naherungs-

beziehungen fiir die Berechnung von Konzentrationsprofilen fiir einen nichtlinearen Desorptionsproze8

mit Dirichlet-Randbedingungen und einer Veranderung des Diffusionskoeffizienten mit der Konzentration

nach einer Potenzfunktion. Die Bezichungen sind anwendbar auf nicht-schrumpfende oder schrumpfende
Systeme mit Platten-, Zylinder- bzw. Kugengeometrie.

NPAUBJMXXEHHBIA METOJ PEHEHUS 3AJJAYA HEJIUHEUHON AUOOY3IUK NPH
CTENEHHOW 3ABUCHUMOCTH KO3OOHUUMEHTA AUPOYIUM OT KOHLEHTPALIMHU.
II. PACYET MPOGUAEN KOHIEHTPALIMU

Annotanums — [IpoBoautca HexoTopasa Moguduxauss npeiroxensoro B pabore [I] npubamxensoro

MeTola, KOTOPKIH 3aTEM HCMOAb3YETCA WUIA pacuera npoduieidl KOHUSHTPALMHE HeJIMHEHHOTrO npolecca

JecopOiuK NpH rpaHUYHBIX Ycnopuax JHpHxie u creneHHOH 3aBHCHMOCTH koddduunenta auddysnu

OT KOHUEHTpPalMH. MeTOa MOXeT NPHMEHATHCA IA pacdeTa CHCTEM ¢ ycaiaxoit unu 6es B ciyvae
CNEAYIOWIMX TEOMETPHIA: NJIaCTHHA, LMAHHAD, Wap.



